
From Generation to Verified Synthesis

Bridging Industrial Reality via C-Guided Agents

Min Li

January 27, 2026

School of Integrated Circuit, Southeast University

Contributor：Kezhi Li（The Chinese University of Hong Kong）



1

Table of content

Intro & Motivation

Methodology: The Core

Benchmark & Experiments

Conclusion

2

2

3

4



AI Chip Complexity ⬆ 
(GPUs, NPUs)

Pain Point:
Engineering bottleneck 
& prolonged design 
cycles.

Background: The Rise of LLM-Assisted Design

3

The Challenge
LLMs show potential in 
code generation.

Natural Language 
Understanding 

⬇
Hardware Synthesis

The Opportunity
Methods: From
Supervised Fine-tuning

To Multi-Agent System. 
While promising, still 
in the prototype 
phase.

Current Approach



Current Limitation: The Gap to Industrial Reality

4

1. Ambiguous Specification
• Natural language lacks precision for 

complex logic.
• Result: Unstable architectural decisions.

2. Limited Scalability
• Natural language lacks precision for 

complex logic.
• Result: Unstable architectural decisions.

3. No Formal Guarantee
• Simulation misses corner cases.
• Result: Cannot ensure functional 

correctness.



Current Limitation: The Gap to Industrial Reality

5

Direct synthesis from natural language cannot 
meet industrial standards for correctness and scale.



1

Table of content

Intro & Motivation

Methodology: The Core

Benchmark & Experiments

Conclusion

6

2

3

4



Methodology Overview

7

C-Guided Planning RTL Generation Verifiable Debugging Loop

Integrating Static Analysis, Equivalence Checking, 
and LLM Agents in a unified pipeline.



The Planning Agent: Static Decomposition

8

Driven by Static Analysis
Uses C Compiler (Clang) 
AST to analyze function 
dependencies.

Modular Partitioning
Breaks monolithic designs 
into manageable sub-tasks.

Bottom-Up Strategy
Verifies leaf modules first to 
simplify top-level 
integration.



The Initializing Agent: Setup & Synthesis

9

Dual Generation
Produces both the Initial 
RTL and the Verification 
Harness simultaneously.

Timeframe Alignment
Automatically determines 
pipeline depth (latency) for 
sequential logic.

Strict Anchoring
Harness asserts strict 
equivalence between C 
outputs and RTL outputs



The Debugging Agent: Formal-Guided Convergence

10

Beyond Pass/Fail
Uses formal tools (hw-
cbmc) to generate precise 
feedback.

Bug Locator
Identifies the exact line of 
syntax errors or logic 
mismatches.

CE Simplifier
Extracts minimal Counter-
Examples (input values that 
break the design) to guide 
the fix.



1

Table of content

Intro & Motivation

Methodology: The Core

Benchmark & Experiments

Conclusion

11

2

3

4



Benchmark Curation

12

The Gap
Existing datasets lack 
industrial specifications and 
executable C reference 
models.

Our Contribution
A novel suite targeting 
datapath-intensive designs.

Completeness
Each case includes a 
detailed NL Spec and a 
Golden C Reference 
Model.



Main Results: Robustness Across Complexity

13

Broad Coverage: Verified across 15+ modules, ranging from standard 
IEEE754 to custom HiFloat8.
Scale Handling: Successfully generated designs exceeding 1000 lines of 
RTL code.
The "Agent" Effect:
• Initial LLM generation (ISR) can be as low as 20% for complex logic.
• It achieves >70% Final Success Rate (FSR) on most modules through 

iterative fixing.

Selected Results



Ablation Studies: Why It Works

14

Necessity of Reference-
Guided Planning

Efficiency of Formal 
Debugging Tools

Baseline (No Static Analysis): Fails 
completely on large designs (FSR ➡ 0%).
Ours: Maintains stability via modular 
decomposition.

w/o Bug Locator: Success Rate ⬇ (Hard 
to locate errors in the code).
w/o CE Simplifier: Need more efforts 
and tokens on the CE understanding.
w/o CE: Fails greatly (Blind guessing).



The Gap to Manual Design

15

Observation:
LLM-generated RTL trails expert human designs in Area and Delay.

The "Why":
Our current priority is guaranteeing functional equivalence (passing formal 
checks) rather than aggressive logic optimization.

The Value:
Verified Baseline: It provides a correct, executable starting point.
Agile Iteration: It is easier for engineers to optimize correct code than to fix 
broken logic.



1

Table of content

Intro & Motivation

Methodology: The Core

Benchmark & Experiments

Conclusion

16

2

3

4



Conclusion

17

Summary Future Work

Reference-Driven Paradigm
Shifted from ambiguous natural 
language to C-Guided Synthesis.

End-to-End Verification
The first pipeline to integrate 
Formal Equivalence Checking into 
the generation loop.

Industrial Validity
Curated a benchmark suite 
(including HiFloat8) to prove 
robustness on complex 
datapaths.

Specialized Debugging Models
Training smaller, task-specific 
models to reduce reliance on large 
commercial LLMs.

Open-Source Tooling
Developing more robust open-
source Equivalence Checking tools 
for modern RTL.

Full-System Scale
Extending the decomposition 
strategy to handle full industrial-
scale system designs.



Thank You

18


