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Abstract
Ensuring functional consistency between high-level algorithmic

models and low-level hardware implementations is a critical chal-

lenge, particularly as modern design flows increasingly span hetero-

geneous abstractions—from deep learning frameworks to hardware

netlists. In this paper, we present EqivFusion, an end-to-end

equivalence checking tool tailored for multi-modal circuit designs.

Unlike traditional flows that rely on siloed tools or ad-hoc transla-

tion, EquivFusion leverages a verification-oriented MLIR lowering

pipeline to unify diverse entry points—including PyTorch, C/C++,

Chisel, Verilog, and gate-level netlists—into a common intermedi-

ate representation. This architecture enables automated, pairwise

equivalence checking across diverse abstraction levels by rigor-

ously translating designs into standard formal verification formats,

i.e., SMT-LIB, BTOR2, AIGER. We demonstrate EquivFusion’s feasi-

bility to bridge the semantic gap between software specifications

and hardware realizations, showcasing its effectiveness in facilitat-

ing “shift-left” formal verification for datapath-intensive hardware

designs. EquivFusion is available online
1
.

1 Introduction
The complexity of modern hardware systems has necessitated a

paradigm shift in design flows. To copewith the demands of domain-

specific accelerators and data-intensive workloads, designers are

moving beyond traditional Register-Transfer Level (RTL) entry

points. The contemporary design spectrum is highly heterogeneous:

algorithmic specifications are often defined in deep learning frame-

works like PyTorch [20]; high-level synthesis (HLS) models [12] are

written in C++; and hardware construction languages (HCLs) such

as Chisel [4] are used to generate RTL, which is subsequently syn-

thesized into gate-level netlists for implementation. This diversity

enables rapid innovation but introduces a fundamental challenge:

ensuring functional correctness across representations that differ

drastically in semantics, granularity, and tooling support.

For example, verifying that a PyTorch model faithfully corre-

sponds to its Verilog counterpart is critical in domains like mobile

System-on-Chips (SoCs), where camera pipelines increasingly re-

place traditional Image Signal Processors (ISP) with end-to-end
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deep neural hardware [28]. Similarly, datapath-intensive accelera-

tors for vision or language models often originate from high-level

algorithmic intent but must be validated against low-level realiza-

tions [11, 12]. These scenarios highlight the need for robust equiv-

alence checking across heterogeneous design abstractions [32].

Existing equivalence checking tools, however, remain largely

siloed across specific abstraction boundaries and modalities. Open-

source engines such as ABC [9] and Yosys EQY [33, 34] offer

logic equivalence checking for RTL/netlist designs, while HW-

CBMC [25] supports bounded checking between C and Verilog.

Commercial solutions such as Synopsys VC Formal Datapath [29]

and Cadence C2RTL [31] target C/C++-to-RTL datapath validation,

and tools like Synopsys Formality [30] focus on RTL-to-gate equiva-

lence for synthesis sign-off. Despite their effectiveness within each

segment, none of these tools provides an end-to-end, extensible

front-end that directly ingests modern algorithmic specifications

(e.g., PyTorch) and hardware implementations (e.g., Verilog) and

align them for equivalence checking. As a result, cross-modal val-

idation often falls back to simulation-driven approaches [8, 19],

requiring manual testbenches and are prone to missing subtle arith-

metic discrepancies in datapath-intensive designs [7, 16].

The emergence of MLIR [2, 22] and CIRCT [1] offers a promising

foundation for unification. Their multi-level design allows struc-

tural and semantic information to be captured explicitly across

abstraction boundaries. However, existing MLIR workflows are pri-

marily oriented toward compilation, lacking a verification-oriented

pipeline capable of modeling equivalence relations or generating

proof obligations. While recent work [15] has explored embed-

ding logic equivalence checking (LEC) and a small subset of Sys-

temVerilog Assertions (SVAs) [13] into MLIR, it does not address the

broader challenge of cross-modal hardware equivalence checking.

As verification shifts earlier in the design cycle, there is a critical

need for a system that leverages MLIR’s representational power

while automating the generation of formal checks.

To this end, we introduce EqivFusion, a practical equivalence

verification pipeline that unifies heterogeneous design modalities.

We leverage MLIR not merely as a compilation infrastructure, but

as the backbone of a rigorous verification workflow. EquivFusion

advances the state of hardware verification through the following

contributions:

• Unified Multi-Modal Frontend: EqivFusion acts as a seman-

tic bridge, enabling automated pairwise equivalence checking

https://github.com/FORMiND-Lab/EquivFusion
https://youtu.be/AdEeZHU54qA
https://youtu.be/AdEeZHU54qA
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between diverse abstraction levels. Users can formally verify

a Chisel module against its C++ behavioral specification, or a

synthesizable PyTorch model directly against its RTL implemen-

tation.

• Verification-Oriented Lowering: We implement a specialized

MLIR pipeline that preserves high-level semantics (e.g., array

operations, loop structures) where beneficial, while progressively

lowering hardware specifics to a canonical representation. This

avoids the semantic loss often associated with generic synthesis.

• Flexible Multi-Engine Backend: Rather than binding to a sin-

gle engine, EquivFusion exports designs to standard formats

including SMT-LIB [5], BTOR2 [27], and AIGER [6]. This flexi-

bility allows users to leverage best-in-class open-source solvers

(e.g., Z3 [14], Bitwuzla [26], kissat [17]) tailored to the specific

logic depth of the problem.

Ultimately, EqivFusion bridges the semantic gap between specifi-

cations and implementations, enabling automated “shift-left” veri-

fication that traps functional errors early in the design cycle.

2 Related Work
2.1 MLIR-based Hardware Infrastructures
MLIR [2, 22] serves as a reusable compiler infrastructure designed to

support domain-specific intermediate representations (IRs) through

a unified dialect system. Its key innovation lies in enabling IRs at

multiple abstraction levels to coexist and interact, facilitating pro-

gressive lowering and improving interoperability with downstream

EDA tools. Built on MLIR, CIRCT [1] (Circuit IR Compilers and

Tools) provides a collection of hardware-oriented dialects and tool-

ing intended to form modular, reusable flows and to interoperate

with downstream EDA tools. Recent work [15] implements basic

logic checks and assertions into CIRCT, yet it is limited to small-

scale reasoning and does not address the semantic gap between

high-level algorithmic models and hardware implementations.

2.2 Hardware Equivalence Checking
Equivalence checking is a central technique in hardware verifica-

tion for ensuring functional consistency across design transforma-

tions [21, 23]. Compared to standard flows where designs stabilize

within a single domain, checking equivalence across abstraction

levels-particularly between software reference models and hard-

ware implementations-remains more challenging. It is commonly

addressed through simulation-based verification or manually main-

tained reference models, approaches incurring significant engineer-

ing effort and scale poorly for datapath-intensive designs.

Existing tools focus on limited verification scenarios. Commer-

cial solutions such as Synopsys Formality [30] and Cadence Confor-

mal [10] target RTL-to-netlist equivalence, while Synopsys VC For-

mal DPV [29] and Cadence C2RTL [31] support C-to-RTL validation.

Open-source tools including ABC [9], the Yosys EQY flow [33, 34],

and HW-CBMC [25] provide scalable boolean or bounded reason-

ing, but are tightly coupled to fixed language pairs and RTL/netlist

flows, lacking extensible front-end support for modern algorithmic

specifications and hardware languages such as PyTorch or Chisel.

Algorithmic Side
PyTorch / C / C++ 

Hardware Side
Chisel / Verilog / Gate-Level Netlists

Modality Gap
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Figure 1: Overview of EquivFusion.

3 Overview of the Tool
3.1 Overview of Architecture
EqivFusion addresses cross-modal equivalence checking between

algorithmic specifications and hardware implementations by uni-

fying heterogeneous inputs into a common intermediate represen-

tation. To support “shift-left” verification, it adopts a verification-

oriented lowering strategy that preserves reasoning-relevant se-

mantics and delays bit-level refinement when possible. The tool is

designed for datapath-intensive modules dominated by arithmetic

and structured dataflow (e.g., kernels and accelerator datapaths),

while control-dominant protocols with rich temporal behaviors are

out of scope and are better served by hardware model checking [18].

As shown in Figure 1, EqivFusion accepts designs from di-

verse entry points, including PyTorch, C/C++, Chisel, Verilog, and

gate-level netlists. Each input is first translated by existing front-

ends into MLIR, bringing heterogeneous specifications into a com-

mon intermediate form. At the core, EqivFusion hosts a set of

verification-oriented dialects on top of CIRCT: sequential designs

are represented using a dedicated sequential abstraction and can be

selectively unrolled to derive equivalent combinational views, while

combinational and hardware-level structure is maintained through

progressive lowering. On the unified IR, EqivFusion constructs a

miter circuit by instantiating the specification and implementation

under shared inputs and encoding output equivalence constraints.

Finally, the miter is exported to standard solver formats (SMT-LIB,

BTOR2, AIGER) and discharged to off-the-shelf SAT/SMT solvers.

This modular design decouples language front-ends from verifica-

tion back-ends, making it straightforward to extend EqivFusion

with new input modalities or solvers.

3.2 Verification Scope
3.2.1 Combinational Equivalence Checking. EqivFusion supports

combinational equivalence checking for designs that can be mod-

eled as pure functions from inputs to outputs within a single cycle.

This setting covers a wide range of modules extracted from larger

systems, including arithmetic kernels, feed-forward blocks, and

bit-precise datapath components, which may arise as standalone

designs or as combinational regions from larger sequential systems.

3.2.2 Transactional Equivalence Checking. Beyond purely combina-

tional settings, EqivFusion also targets equivalence checking for

multi-cycle designs, where hardware behavior spans multiple clock
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cycles. In such scenarios, the two implementations may differ in

cycle-level timing, latency, or internal pipelining, yet are expected

to produce equivalent results over a complete transaction from

inputs to outputs. Typical examples include validating an algorith-

mic reference model against a pipelined RTL implementation, or

checking a high-level description with implicit scheduling against

a multi-cycle hardware realization.

4 Implementation Details
4.1 User Interface and Workflow
The EqivFusion framework is accessed via its primary command-

line interface (CLI), the equiv_fusion utility. A typical hardware

equivalence verification workflow consists of five sequential steps,

each invoked by a specific subcommand:

1 # Step 1: Specify input/output ports for algorithmic design
2 set_port <-input|-output> port-name
3 # Step 2: Read specification design
4 read_c|read_v|read_firrtl -spec -top <module-name> <input-file>
5 # Step 3: Read implementation design
6 read_c|read_v|read_firrtl -impl -top <module-name> <input-file>
7 # Step 4: Construct miter and generate output file
8 equiv_miter -specModule <module-name> -implModule <module-name>

-mitermode <smtlib|btor2|aiger> -o <miter-file>
9 # Step 5: Run solver for verification
10 solver_runner -solver <solver-name> -inputfile <miter-file>

Listing 1: Execute Steps

4.2 Unified Multi-Modal Frontend
To bridge the modality gap between heterogeneous abstraction

levels, EqivFusion implements specialized translation flows built

upon the CIRCT infrastructure. These flows map both algorithmic

(Pytorch/C/C++) and hardware (Chisel/Verilog/netlists) descrip-

tions onto a unified intermediate representation comprised of the

CIRCT core dialects (HW, Comb, Seq, and Verif).

4.2.1 Algorithmic Description Translation. For high-level languages
like C/C++ and PyTorch, EqivFusion targets a specific synthe-

sizable subset conducive to High-Level Synthesis (HLS). Eqiv-

Fusion leverages external compiler infrastructures to convert

high-level specifications into the MLIR Affine dialect. Specifically,

Polygeist [24] translates C/C++ programs, while torch-mlir [3] and

upstream MLIR tooling are used to convert PyTorch models.

With the Affine dialect as the entry point, EqivFusion imple-

ments a custom HLS flow built upon the CIRCT infrastructure. This

flow progressively lowers the Affine IR by applying a sequence

of both existing CIRCT transformations and custom-implemented

passes. The flow executes key operations including Loop Unrolling,

Memref Flattening, Constant Merging, and Operation/Function

Lowering, ultimately converting the high-level representation into

an IR expressed in CIRCT’s core dialects.

4.2.2 Hardware Description Translation. For Chisel designs, Eqiv-

Fusion utilizes firtool (a utility within CIRCT) to parse the .fir file
generated by the Chisel compiler and convert it into an IR expressed

in CIRCT’s core dialects. For Verilog/Netlist inputs, the tool em-

ploys circt-verilog (also within CIRCT), which leverages the Slang

parser to process the source designs broad syntactic support. Both

paths ultimately convert the hardware descriptions into the unified

IR expressed in CIRCT’s core dialects.

Notably, EqivFusion implements sequential unrolling to handle

state-dependent logic. This technique expands the sequential cir-

cuitry over a specified number of clock cycles (𝑘) to construct a

cumulative combinational model. This model is behaviorally equiv-

alent to the original design over the 𝑘 unrolled time-frames, thereby

enabling transactional equivalence checking to rigorously verify

state transitions across a finite temporal window.

4.3 Miter Construction Middle-End
The equiv_miter command orchestrates the miter circuit construc-

tion process, synthesizing a unified verification model from the

distinct specification and implementation modules. The resulting

miter circuit is subsequently exported into standard formats to

facilitate formal equivalence checking.

4.3.1 Input/Output Mapping. The fundamental premise of the equiv-

alence verification model in EqivFusion is that, given identical

input stimuli, both the specification and implementation modules

must produce identical outputs. Consequently, prior to construct-

ing the miter model, EqivFusion establishes a one-to-one I/O

correspondence between the spec. module and the impl. module via
a port matching mechanism. EqivFusion establishes a one-to-one

correspondence between specification and implementation ports

by enforcing consistency in port count, names, and types. Upon

successful validation, EqivFusion binds the ports by name to fi-

nalize the mapping for verification. Conversely, if any check fails,

the tool reports a mismatch error and terminates the process.

4.3.2 Construct Miter. EqivFusion supports multiple modes for

miter construction, including smtlib, btor2, and aiger. Depending

on the selected mode, equivalence constraints are encoded either

as word-level assertions or bit-level XOR checks, enabling compati-

bility across SAT and SMT solvers.

4.4 Solving Backends and Verification Results
The solver_runner command serves as the unified interface be-

tween EqivFusion’s internal IR and external formal verification

engines. It automates the invocation of backend solvers tailored to

the specific verification format generated in the previous stage.

4.4.1 Supported Solvers. EqivFusion currently integrates three

industry-standard solvers to cover different verification needs:

Z3 [14] (for SMT-LIB), Bitwuzla [26] (optimized for BTOR2 word-

level reasoning), and Kissat [17] (for AIGER bit-level verification).

This flexibility allows users to select the most efficient engine based

on the circuit’s complexity and abstraction level.

4.4.2 Verification Outcome and Debugging. The solver’s output pro-
vides a definitive conclusion regarding the functional consistency

of the design pair: UNSAT (Equivalent) indicates that no input com-

bination exists that causes the outputs to diverge, proving that the

implementation is functionally equivalent to the specification; SAT
(Bugs Found) indicates that the designs are not equivalent. Crucially,
EqivFusion captures the counterexample provided by the solver —
a specific assignment of input values that triggers the mismatch.

This counterexample serves as a precise diagnostic trace, enabling

designers to reproduce the error and pinpoint the logic bug within

the hardware implementation.
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5 Usage Scenarios and Case Studies
This section demonstrates the practical usage of EqivFusion

through representative case studies.

5.1 Case Study 1: C++ v.s. Chisel
5.1.1 Experimental Setup.We verify a sorting module for unsigned

integers to demonstrate equivalence checking across different ab-

straction levels. The setup contrasts a sequential software reference

against a parallel hardware implementation:

Specification (C++): Bubble Sort algorithm (Listing 2)

Implementation (Chisel): Bitonic Sort algorithm (Listing 3)

1 #define N 8
2 extern "C" void Sort(unsigned char input[N], unsigned char

output[N]) {
3 // Sorts the 'input' array, stores the result in 'output'
4 ...
5 }

Listing 2: Sort.cpp (Bubble Sort)

1 class Sort(width: Int = 8) extends RawModule {
2 val input = IO(Input(Vec(8, UInt(width.W))))
3 val output = IO(Output(Vec(8, UInt(width.W))))
4 // Sorts the 'io.input', drives the result to 'io.output'
5 ...
6 }

Listing 3: Sort.scala (Bitonic Sort)
5.1.2 Verification Process and Results. We evaluate EqivFusion by

conducting verification across two distinct scenarios.

Experiment I: Consistent Sorting Order Verification. In the

baseline scenario, both the C++ specification and the Chisel imple-

mentation are configured to sort the input array in ascending order.

The backend solver returns UNSAT, proving the Chisel implementa-

tion is functionally equivalent to the C++ specification, despite the

fundamental algorithmic disparity (Bubble Sort vs. Bitonic Sort).
Experiment II: Discrepancy Detection (Bug Injection). Subse-
quently, to validate the tool’s error detection capability, we modify

the C++ specification to sort in descending order while leaving

the Chisel implementation unchanged (ascending). The solver cor-

rectly returns SAT, successfully flagging the semantic mismatch

and identifying the designs as non-equivalent.

5.2 Case Study 2: PyTorch v.s. Gate-Level Netlist
5.2.1 Experimental Setup. This case study targets the verification

of a fundamental deep learning primitive: a dot product operator

applied to two 2-dimensional, 8-bit integer vectors.

Specification(Pytorch): Wedefine a high-level torch.nn.Module
that encapsulates the standard torch.dot operation (Listing 4). To

bridge the gap between Python-based deep learning frameworks

and hardware verification, we leverage the torch-mlir compiler

infrastructure. This pipeline automatically lowers the PyTorch mod-

ule into the MLIR Affine dialect (Listing 5), preserving the loop
structures and memory access patterns required for formal analysis.

1 class DotModule(torch.nn.Module):
2 def mm(self, a, b):
3 return torch.dot(a, b)
4

5 def forward(self, a, b):
6 return self.mm(a, b)

Listing 4: dot.py

1 module {
2 func.func @dot(%arg0: memref<2xi8>, %arg1: memref<2xi8>) ->

memref<i8> {
3 ....
4 affine.for %arg2 = 0 to 2 {
5 %2 = affine.load %arg0[%arg2] : memref<2xi8>
6 %3 = affine.load %arg1[%arg2] : memref<2xi8>
7 %4 = arith.muli %2, %3 : i8
8 affine.store %4, %alloc[%arg2] : memref<2xi8>
9 }
10 ...
11 return %alloc_1 : memref<i8>
12 }
13 }

Listing 5: dot.mlir

Implementation (Netlist): The hardware implementation begins

as a hand-written Register-Transfer Level (RTL) Verilog design

(Listing 6). To simulate a realistic backend flow, we employ the open-

source synthesis suite Yosys to compile RTL into a flattened gate-

level netlist. The synthesis targets cmos_cells.lib, a representative
standard cell library containing fundamental combinational logic

gates, resulting in the structural netlist shown in Listing 7.

1 module dot2_comb #(
2 parameter N = 2, // Vector length
3 parameter W = 8, // Bit-width of element
4 parameter ACC_W = 32, // Bit-width of accumulator
5 parameter O_W = 8 // Bit-width of Output
6 )(
7 input logic signed [N-1:0] [W-1:0] arg_0,
8 input logic signed [N-1:0] [W-1:0] arg_1,
9 output logic signed [0:0][W-1:0] out_0
10 );
11 logic signed [N-1:0] [(2*W)-1:0] prod;
12 genvar i;
13 generate
14 for (i = 0; i < N; i = i + 1) begin : GEN_PROD
15 assign prod[i] = $signed(arg_0[i]) *

$signed(arg_1[i]);
16 end
17 endgenerate
18 logic signed [ACC_W-1:0] sum_reg;
19 ... // Accumulate all products into sum_reg.
20 assign out_0 = sum_reg[O_W-1:0];
21 endmodule

Listing 6: dot.v

1 module dot2_comb(arg_0, arg_1, out_0);
2 wire _0000_;
3 wire _0001_;
4 ...
5 NOT _0852_ (.A(arg_0[8]), .Y(_0307_));
6 ...
7 endmodule

Listing 7: netlist.v
5.2.2 Verification Process and Results. We apply EqivFusion to

verify the equivalence between the Affine MLIR (Spec.) and the syn-

thesized Netlist (Impl.) across two distinct precision configurations:

Experiment I: 8-bit Output Verification. In the setup, both the

PyTorch specification and the Verilog implementation are config-

ured with 8-bit inputs and outputs. The solver returns UNSAT, prov-
ing the gate-level netlist is functionally equivalent to the high-level

PyTorch specification within the constrained 8-bit domain.
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Experiment II: 32-bit Output Verification (Precision Mis-
match). We extend both designs to 32-bit outputs, upon which the

solver returns SAT, indicating non-equivalence. EqivFusion pin-

points the root cause to the Verilog implementation’s sign-extension

of intermediate signals: the hardware design sign-extends inter-

mediate values during the calculation, creating a subtle semantic

divergence from the torch specification.

6 Conclusion
This paper presents EqivFusion, a unified equivalence checking

framework that enables formal reasoning across heterogeneous

design modalities, from high-level algorithmic specifications to

hardware implementations. Built on MLIR and CIRCT, EqivFu-

sion provides an automated, solver-agnostic pipeline that system-

atically lowers diverse inputs into a common logic representation,

eliminating the need for manually maintained reference models.

By supporting equivalence checking early in the design flow, the

framework facilitates shift-left verification for datapath-intensive

designs. As an open-source tool, EqivFusion establishes the first

step towards cross-layer formal verification. We plan to integrate

it into the CIRCT ecosystem to support standardized equivalence

checking within MLIR-based hardware compilation flows.
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A Walk through EquivFusion
A recorded walkthrough is available at https://youtu.be/

AdEeZHU54qA.

A.1 Installation
EqivFusion is compatible with Linux and macOS environments.

The following steps(Listing 8) outline the procedure to clone the

repository, configure the build system using CMake and Ninja, and

install the required solvers (including AIGER, Bitwuzla and Kissat):

1 # Clone the repository
2 git clone git@github.com:FORMiND-Lab/EquivFusion.git
3 cd EquivFusion
4

5 # Configure and build the project
6 mkdir build && cd build
7 cmake -G Ninja ..
8

9 # Build
10 ninja
11

12 # Install solvers
13 ninja install_solvers
14

15 # Add 'EquivFusion/build/bin' to your PATH environment variable
16 export PATH="$PWD/bin/:$PATH"

Listing 8: Commands to Build and Install EquivFusion

Building EqivFusion requires git, ninja, python3, cmake, a C++

toolchain, and the readline library, along with the z3 solver in the

system PATH.

A.2 Docker
To facilitate reproducibility and ease of deployment, we provide

a Docker-based environment. The Docker image can be built and

run using the following commands(Listing 9):

1 $ docker build -t equivfusion .
2 $ docker run -it equivfusion

Listing 9: Commands to Build and Run Docker

A.3 Run Examples
A.3.1 C++ v.s. Chisel. This appendix provides the complete source

code and execution workflow for the C++ Specification vs Chisel

Implementation case study presented in Section 5.1.

Specification(C++): The high-level specification is written in C++

(Listing 10), implementing the Bubble Sort algorithm:

1 // Sort.cpp
2 #include <cstdint>
3

4 #define N 8
5

6 extern "C" void Sort(unsigned char input[N], unsigned char
output[N]) {

7 unsigned char temp[N];
8

9 for (unsigned int i = 0; i < N; i++) {
10 temp[i] = input[i];
11 }
12

13 for (unsigned int i = N - 1; i > 0; i--) {
14 unsigned char high = temp[0];
15 unsigned char low = 0;
16

17 for (unsigned int j = 1; j < N; j++) {
18 if (j <= i) {

19 if (temp[j] > high) {
20 low = high;
21 high = temp[j];
22 } else {
23 low = temp[j];
24 }
25 } else {
26 low = temp[j - 1];
27 }
28

29 temp[j - 1] = low;
30 }
31

32 temp[i] = high;
33 }
34

35 for (unsigned int i = 0; i < N; i++) {
36 output[i] = temp[i];
37 }
38 }

Listing 10: Sort.cpp

This C++ source is lowered into the MLIR Affine dialect(Listing 11)

using Polygeist:

1 // Sort.mlir
2 module {
3 func.func @Sort(%arg0: memref<8xi8> {polygeist.param_name =

"input"}, %arg1: memref<8xi8> {polygeist.param_name =
"output"}) attributes {llvm.linkage = #llvm.linkage<external>}
{

4 %c8 = arith.constant 8 : index
5 %alloca = memref.alloca() : memref<8xi8>
6 affine.for %arg2 = 0 to 8 {
7 %0 = affine.load %arg0[%arg2] : memref<8xi8>
8 affine.store %0, %alloca[%arg2] : memref<8xi8>
9 }
10 affine.for %arg2 = 1 to 8 {
11 %0 = arith.subi %c8, %arg2 : index
12 %1 = arith.index_cast %0 : index to i32
13 %2 = affine.load %alloca[0] : memref<8xi8>
14 %3 = affine.for %arg3 = 1 to 8 iter_args(%arg4 = %2) ->

(i8) {
15 %4 = arith.index_cast %arg3 : index to i32
16 %5 = arith.cmpi ule, %4, %1 : i32
17 %6:2 = scf.if %5 -> (i8, i8) {
18 %7 = affine.load %alloca[%arg3] : memref<8xi8>
19 %8 = arith.extui %7 : i8 to i32
20 %9 = arith.extui %arg4 : i8 to i32
21 %10 = arith.cmpi sgt, %8, %9 : i32
22 %11 = arith.select %10, %arg4, %7 : i8
23 %12 = arith.select %10, %7, %arg4 : i8
24 scf.yield %11, %12 : i8, i8
25 } else {
26 %7 = affine.load %alloca[%arg3 - 1] : memref<8xi8>
27 scf.yield %7, %arg4 : i8, i8
28 }
29 affine.store %6#0, %alloca[%arg3 - 1] : memref<8xi8>
30 affine.yield %6#1 : i8
31 }
32 affine.store %3, %alloca[-%arg2 + 8] : memref<8xi8>
33 }
34 affine.for %arg2 = 0 to 8 {
35 %0 = affine.load %alloca[%arg2] : memref<8xi8>
36 affine.store %0, %arg1[%arg2] : memref<8xi8>
37 }
38 return
39 }
40 }

Listing 11: Sort.mlir

Implementation(Chisel): The hardware implementation is de-

scribed in Chisel (Listing 12), implementing a Bitonic Sorter:

1 // Sort.scala
2 import chisel3._
3 import circt.stage.ChiselStage

https://youtu.be/AdEeZHU54qA
https://youtu.be/AdEeZHU54qA
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4

5 class CompareAndSwap(width: Int) extends RawModule {
6 val io = IO(new Bundle {
7 val a = Input(UInt(width.W))
8 val b = Input(UInt(width.W))
9 val min = Output(UInt(width.W))
10 val max = Output(UInt(width.W))
11 })
12

13 when(io.a <= io.b) {
14 io.min := io.a
15 io.max := io.b
16 }.otherwise {
17 io.min := io.b
18 io.max := io.a
19 }
20 }
21

22 class Sort(width: Int = 8) extends RawModule {
23 val input = IO(Input(Vec(8, UInt(width.W))))
24 val output = IO(Output(Vec(8, UInt(width.W))))
25

26 def CAS(a: UInt, b: UInt): (UInt, UInt) = {
27 val m = Module(new CompareAndSwap(width))
28 m.io.a := a
29 m.io.b := b
30 (m.io.min, m.io.max)
31 }
32

33 // === Stage 1 ===
34 val (s1_0, s1_1) = CAS(input(0), input(1))
35 val (s1_3, s1_2) = CAS(input(2), input(3)) // Swap order for

bitonic merge
36 val (s1_4, s1_5) = CAS(input(4), input(5))
37 val (s1_7, s1_6) = CAS(input(6), input(7)) // Swap order
38

39 // === Stage 2 ===
40 val (s2_0_t, s2_2_t) = CAS(s1_0, s1_2)
41 val (s2_1_t, s2_3_t) = CAS(s1_1, s1_3)
42 val (s2_0, s2_1) = CAS(s2_0_t, s2_1_t)
43 val (s2_2, s2_3) = CAS(s2_2_t, s2_3_t)
44

45 val (s2_6_t, s2_4_t) = CAS(s1_4, s1_6) // Descending merge
46 val (s2_7_t, s2_5_t) = CAS(s1_5, s1_7)
47 val (s2_5, s2_4) = CAS(s2_4_t, s2_5_t)
48 val (s2_7, s2_6) = CAS(s2_6_t, s2_7_t)
49

50 // === Stage 3 ===
51 val (s3_0_t1, s3_4_t1) = CAS(s2_0, s2_4)
52 val (s3_1_t1, s3_5_t1) = CAS(s2_1, s2_5)
53 val (s3_2_t1, s3_6_t1) = CAS(s2_2, s2_6)
54 val (s3_3_t1, s3_7_t1) = CAS(s2_3, s2_7)
55

56 val (s3_0_t2, s3_2_t2) = CAS(s3_0_t1, s3_2_t1)
57 val (s3_1_t2, s3_3_t2) = CAS(s3_1_t1, s3_3_t1)
58 val (s3_4_t2, s3_6_t2) = CAS(s3_4_t1, s3_6_t1)
59 val (s3_5_t2, s3_7_t2) = CAS(s3_5_t1, s3_7_t1)
60

61 val (o0, o1) = CAS(s3_0_t2, s3_1_t2)
62 val (o2, o3) = CAS(s3_2_t2, s3_3_t2)
63 val (o4, o5) = CAS(s3_4_t2, s3_5_t2)
64 val (o6, o7) = CAS(s3_6_t2, s3_7_t2)
65

66 output(0) := o0
67 output(1) := o1
68 output(2) := o2
69 output(3) := o3
70 output(4) := o4
71 output(5) := o5
72 output(6) := o6
73 output(7) := o7
74 }
75

76 object Sort extends App {
77 (new ChiselStage).execute(args,

Seq(chisel3.stage.ChiselGeneratorAnnotation(() => new
Sort(8))))

78 }

Listing 12: Sort.scala

This design is compiled into the FIRRTL intermediate representation

(Listing 13) using sbt:

1 FIRRTL version 3.3.0
2 circuit Sort :%[[
3 {
4 "class":"firrtl.transforms.DedupGroupAnnotation",
5 "target":"~Sort|CompareAndSwap",
6 "group":"CompareAndSwap"
7 },
8

9 ......
10

11 {
12 "class":"firrtl.transforms.DedupGroupAnnotation",
13 "target":"~Sort|Sort",
14 "group":"Sort"
15 }
16 ]]
17 module CompareAndSwap :
18 output io : { flip a : UInt<8>, flip b : UInt<8>, min :

UInt<8>, max : UInt<8>}
19

20 node _T = leq(io.a, io.b)
21 when _T :
22 connect io.min, io.a
23 connect io.max, io.b
24 else :
25 connect io.min, io.b
26 connect io.max, io.a
27

28 ......
29

30 module Sort :
31 input input : UInt<8>[8]
32 output output : UInt<8>[8]
33

34 inst m of CompareAndSwap
35 connect m.io.a, input[0]
36 connect m.io.b, input[1]
37

38 ......
39

40 connect output[4], m_22.io.min
41 connect output[5], m_22.io.max
42 connect output[6], m_23.io.min
43 connect output[7], m_23.io.max

Listing 13: Sort.fir

Execution and Results: To perform the equivalence check, the

following commands(Listing 14) are executed in equiv_fusion:

1 read_c -spec -top Sort Sort.mlir
2 read_fir -impl -top Sort Sort.fir --scalarize-public-modules

false --scalarize-public-modules false --preserve-aggregate all
3 equiv_miter -specModule Sort -implModule Sort -mitermode aiger

-o miter.aiger
4 solver_runner --solver kissat --inputfile miter.aiger

Listing 14: Commands to Run C++ v.s. Chisel Equivalence
Checking

The solver returns UNSAT, proving that the Chisel implementation

is functionally equivalent to the C++ specification despite algorith-

mic differences.

A.3.2 Pytorch v.s. Netlist. This appendix details the complete

source artifacts and verification workflow for the PyTorch Specifi-

cation vs Gate-Level Netlist case study presented in Section5.2.

Specification(Pytorch): The high-level specification is defined as

a PyTorch module (Listing 15) performing a dot product operation:

1 # dot.py
2 from typing import List
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3

4 import torch
5 import torch.nn as nn
6

7 from torch_mlir import fx
8

9 import os
10 import sys
11

12 class DotModule(torch.nn.Module):
13 def mm(self, a, b):
14 return torch.dot(a, b)
15

16 def forward(self, a, b):
17 return self.mm(a, b)
18

19 model = DotModule()
20

21 x = torch.randint(low=-128, high=128, size=(2,),

dtype=torch.int8)
22 y = torch.randint(low=-128, high=128, size=(2,),

dtype=torch.int8)
23

24 m = fx.export_and_import(model, x, y,

output_type="linalg-on-tensors", func_name="dot")
25

26 current_script_path = os.path.abspath(__file__)
27 current_script_dir = os.path.dirname(current_script_path)
28

29 with open(os.path.join(current_script_dir, "dot.mlir"), "w") as
f:

30 f.write(str(m))

Listing 15: dot.py

This PyTorch model is lowered into the MLIR Affine dialect using

the torch-mlir infrastructure combined with upstream MLIR tools.

The resulting MLIR code (Listing 16) serves as the input specifica-

tion for EqivFusion:

1 // dot.mlir
2 module {
3 func.func @dot(%arg0: memref<2xi8>, %arg1: memref<2xi8>) ->

memref<i8> {
4 %c0_i64 = arith.constant 0 : i64
5 %alloc = memref.alloc() {alignment = 64 : i64} : memref<2xi8>
6 affine.for %arg2 = 0 to 2 {
7 %2 = affine.load %arg0[%arg2] : memref<2xi8>
8 %3 = affine.load %arg1[%arg2] : memref<2xi8>
9 %4 = arith.muli %2, %3 : i8
10 affine.store %4, %alloc[%arg2] : memref<2xi8>
11 }
12 %alloc_0 = memref.alloc() {alignment = 64 : i64} :

memref<i64>
13 affine.store %c0_i64, %alloc_0[] : memref<i64>
14 affine.for %arg2 = 0 to 2 {
15 %2 = affine.load %alloc[%arg2] : memref<2xi8>
16 %3 = affine.load %alloc_0[] : memref<i64>
17 %4 = arith.extsi %2 : i8 to i64
18 %5 = arith.addi %4, %3 : i64
19 affine.store %5, %alloc_0[] : memref<i64>
20 }
21 %alloc_1 = memref.alloc() {alignment = 64 : i64} : memref<i8>
22 %0 = affine.load %alloc_0[] : memref<i64>
23 %1 = arith.trunci %0 : i64 to i8
24 affine.store %1, %alloc_1[] : memref<i8>
25 return %alloc_1 : memref<i8>
26 }
27 }

Listing 16: dot.mlir

Implementation(Netlist): The hardware implementation origi-

nates from a SystemVerilog design (Listing 17):

1 // dot.v
2 module dot2_comb #(

3 parameter N = 2, // Vector length
4 parameter W = 8, // Bit-width of each element (signed)
5 parameter ACC_W = 32, // Bit-width of accumulator
6 parameter O_W = 8 // Bit-width of Output
7 )(
8 // Two signed input vectors, each containing N elements of W

bits
9 input logic signed [N-1:0] [W-1:0] arg_0,
10 input logic signed [N-1:0] [W-1:0] arg_1,
11

12 // Signed output: dot product result (sum of element-wise

products)
13 output logic signed [0:0][W-1:0] out_0
14 );
15

16

//============================================================
17 // 1. Element-wise multiplications
18 // Each pair a[i], b[i] is multiplied to produce a 2*W-bit

product.
19

//============================================================
20 logic signed [N-1:0] [(2*W)-1:0] prod;
21

22 genvar i;
23 generate
24 for (i = 0; i < N; i = i + 1) begin : GEN_PROD
25 assign prod[i] = $signed(arg_0[i]) *

$signed(arg_1[i]);
26 end
27 endgenerate
28

29

//============================================================
30 // 2. Summation of all products
31 // This always block performs a combinational reduction (sum)
32 // across all products. The result is stored in sum_reg.
33

//============================================================
34 integer k;
35 logic signed [ACC_W-1:0] sum_reg;
36

37 always @(*) begin
38 sum_reg = '0; // Initialize accumulator to zero
39 for (k = 0; k < N; k = k + 1) begin
40 // Sign-extend each 2*W-bit product to ACC_W bits
41 // before adding, to prevent overflow and preserve

sign.
42 sum_reg = sum_reg +
43 {{(ACC_W-(2*W)){prod[k][(2*W)-1]}}, prod[k]};
44 end
45 end
46

47

//============================================================
48 // 3. Final output assignment
49 // The dot product is simply the total accumulated sum.
50

//============================================================
51 assign out_0 = sum_reg[O_W-1:0];
52

53 endmodule

Listing 17: dot.v

To synthesize this design into a gate-level netlist, we utilize Yosys

with a standard cell library cmos_cells.lib(Listing 18) provided in

the Yosys examples. The corresponding Verilog simulation model

for the cells is cmos_cells.v(Listing 19):

1 // cmos_cells.lib
2 library(demo) {
3 cell(BUF) {
4 area: 6;
5 pin(A) { direction: input; }
6 pin(Y) { direction: output;
7 function: "A"; }
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8 }
9 cell(NOT) {
10 area: 3;
11 pin(A) { direction: input; }
12 pin(Y) { direction: output;
13 function: "A'"; }
14 }
15 cell(NAND) {
16 area: 4;
17 pin(A) { direction: input; }
18 pin(B) { direction: input; }
19 pin(Y) { direction: output;
20 function: "(A*B)'"; }
21 }
22 cell(NOR) {
23 area: 4;
24 pin(A) { direction: input; }
25 pin(B) { direction: input; }
26 pin(Y) { direction: output;
27 function: "(A+B)'"; }
28 }
29 cell(DFF) {
30 area: 18;
31 ff(IQ, IQN) { clocked_on: C;
32 next_state: D; }
33 pin(C) { direction: input;
34 clock: true; }
35 pin(D) { direction: input; }
36 pin(Q) { direction: output;
37 function: "IQ"; }
38 }
39 cell(DFFSR) {
40 area: 18;
41 ff("IQ", "IQN") { clocked_on: C;
42 next_state: D;
43 preset: S;
44 clear: R; }
45 pin(C) { direction: input;
46 clock: true; }
47 pin(D) { direction: input; }
48 pin(Q) { direction: output;
49 function: "IQ"; }
50 pin(S) { direction: input; }
51 pin(R) { direction: input; }
52 ; // empty statement
53 }
54 }

Listing 18: cmos_cells.lib

1 // cmos_cells.v
2 module BUF(A, Y);
3 input A;
4 output Y;
5 assign Y = A;
6 endmodule
7

8 module NOT(A, Y);
9 input A;
10 output Y;
11 assign Y = ~A;
12 endmodule
13

14 module NAND(A, B, Y);
15 input A, B;
16 output Y;
17 assign Y = ~(A & B);
18 endmodule
19

20 module NOR(A, B, Y);
21 input A, B;
22 output Y;
23 assign Y = ~(A | B);
24 endmodule
25

26 module DFF(C, D, Q);
27 input C, D;
28 output reg Q;
29 always @(posedge C)

30 Q <= D;
31 endmodule
32

33 module DFFSR(C, D, Q, S, R);
34 input C, D, S, R;
35 output reg Q;
36 always @(posedge C, posedge S, posedge R)
37 if (S)
38 Q <= 1'b1;
39 else if (R)
40 Q <= 1'b0;
41 else
42 Q <= D;
43 endmodule

Listing 19: cmos_cells.v

The synthesis is performed by executing the following Yosys

passes(Listing 20):

1 read_verilog -sv dot.v
2 hierarchy -check -top top
3

4 proc; opt; fsm; opt; memory; opt
5

6 techmap; opt
7

8 dfflibmap -liberty cmos_cells.lib
9

10 abc -liberty cmos_cells.lib
11

12 opt_clean
13

14 write_verilog netlist.v

Listing 20: Yosys Passes to Synthesized Netlist

This process generates the gate-level netlist (Listing 21). A truncated

snippet of the netlist is shown below:

1 // netlist.v
2 /* Generated by Yosys 0.53+98 (git sha1 50b63c648, g++

13.3.0-6ubuntu2~24.04 -Og -fPIC) */
3

4 (* dynports = 1 *)
5 (* top = 1 *)
6 (* src = "../../verilog/dot2_8/dot2.v:1.1-52.10" *)
7 module dot2_comb(arg_0, arg_1, out_0);
8 wire _0000_;
9 wire _0001_;
10 wire _0002_;
11 wire _0003_;
12 wire _0004_;
13 wire _0005_;
14 wire _0006_;
15 wire _0007_;
16 wire _0008_;
17 wire _0009_;
18 wire _0010_;
19

20 ......
21

22 wire [31:0] sum_reg;
23 NOT _0852_ (
24 .A(arg_0[8]),
25 .Y(_0307_)
26 );
27 NOT _0853_ (
28 .A(arg_1[15]),
29 .Y(_0318_)
30 );
31 NAND _0854_ (
32 .A(arg_0[0]),
33 .B(arg_1[0]),
34 .Y(_0329_)
35 );
36 NAND _0855_ (
37 .A(arg_0[8]),
38 .B(arg_1[8]),
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39 .Y(_0340_)
40 );
41

42 ......
43

44 NOT _1710_ (
45 .A(_0840_),
46 .Y(_0841_)
47 );
48 NOR _1711_ (
49 .A(_0351_),
50 .B(_0841_),
51 .Y(out_0[0])
52 );
53 assign k = 32'd2;
54 assign sum_reg[7:0] = out_0;
55 endmodule

Listing 21: netlist.v

Execution and Results: To verify the equivalence between the

generated MLIR specification and the synthesized netlist, the fol-

lowing commands(Listing 22) are executed in equiv_fusion:

1 read_c -spec -top dot dot.mlir
2 read_v -impl -top dot2_comb netlist.v cmos_cells.v
3 equiv_miter -specModule dot -implModule dot2_comb -mitermode

btor2 -o miter.btor2
4 solver_runner --solver bitwuzla --inputfile miter.btor2

Listing 22: Commands to Run Pytorch v.s.Netlist Equivalence
Checking

The result UNSAT confirms functional equivalence under the 8-bit

configuration.

A.4 Debugging
To ensure robustness and facilitate development, EqivFusion pro-

vides a rigorous testing infrastructure and fine-grained debugging

utilities:

Continuous Integration (CI):AGitHub Actions pipeline enforces

code stability by automatically validating build success and execut-

ing a comprehensive suite of integration tests on every pull request,

preventing functional regression.

equivfusion-hls: This utility isolates the HLS flow execution, en-

abling developers to inspect the intermediate MLIR IR generated

after each transformation pass for deep analysis of the lowering

process.

equivfusion-opt:Modeled after mlir-opt, this tool allows for the

isolated invocation of individual EquivFusion passes, facilitating

targeted debugging and the development of custom optimization

logic.

B Runtime Analysis
Table 1 details the execution time for each command in the verifi-

cation workflows of the examples presented in Appendix A.3.

C Synthesizable Subset and Constraints
For high-level languages like C/C++ and PyTorch, EqivFusion

targets a specific synthesizable subset conducive to High-Level

Synthesis (HLS), with the following specific constraints:

Data Types: Support is limited to integer arithmetic and fixed-

width bit-vectors. Floating-point support is planned via future em-

ulation library integration.

Table 1: Execution Time(seconds)

Stage bitwuzla
smt

bitwuzla
btor2

kissat
aiger

Execution Time (UNSAT): Sort.scala vs Sort.cpp
set_port 0.000006 0.000006 0.000006

read_c 0.017226 0.013448 0.013090

read_firrtl 0.060061 0.073934 0.067827

equiv_miter 0.010399 0.008282 0.031100

solver_runner 47.54907 55.82388 45.67969

Execution Time (SAT): Sort.scala vs Sort.cpp
set_port 0.000005 0.000006 0.000005

read_c 0.013120 0.012417 0.012875

read_firrtl 0.055784 0.079103 0.052333

equiv_miter 0.006621 0.007322 0.027125

solver_runner 0.007440 0.013190 0.018456

Execution Time (UNSAT): Dot.py vs netlist.v
read_c 0.003391 0.003289 0.003449

read_v 0.049022 0.049296 0.052890

equiv_miter 0.023631 0.013858 0.022719

solver_runner 2.776137 3.013583 1.800442

Execution Time (SAT): Dot.py vs netlist.v
read_c 0.003769 0.003429 0.005344

read_v 0.251780 0.278213 0.262784

equiv_miter 0.058312 0.037827 0.066539

solver_runner 0.039862 0.041944 0.055321

Control Flow (Branching): Standard conditionals (e.g., if-else)

are supported if statically resolvable or mappable to multiplexers.

Control Flow (Loops): Loop support is strictly limited to static

affine for loops with compile-time determinable bounds and con-

stant strides. Unstructured control flow (e.g., break, continue) is
prohibited to ensure deterministic unrolling.

Memory & Pointers:Memory operations use statically allocated

arrays. Pointers require fixed sizes and explicit indexing, and pointer

reassignment within conditional scopes is prohibited to ensure

Static Single Assignment (SSA) consistency.

D More Cases
D.1 Dot64 (C++ v.s. Chisel)
This case demonstrates the end-to-end EqivFusion workflow

for verifying equivalence between a high-level algorithmic C++

model and a Chisel design, using the 64-element dot product (dot64)

computation as a canonical benchmark.

Specification (Chisel): FIRRTL, derived from the Chisel de-

sign(Listing 23) via Chisel elaboration.

1 class Dot64 extends RawModule {
2 val arg_0 = IO(Input(Vec(64, SInt(16.W))))
3 val arg_1 = IO(Input(Vec(64, SInt(16.W))))
4 val out_0 = IO(Output(SInt(64.W)))
5 var sum = 0.S(64.W)
6 for (i <- 0 until 64) {
7 val product = arg_0(i) * arg_1(i)
8 sum = sum + product
9 }
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10 out_0 := sum
11 }

Listing 23: Dot64.scala

Implementation (C++): MLIR, derived from the high-level C++

algorithm via Polygeist.

Dot64.cpp(Listing 24): Fully consistent with Chisel specification.

1 extern "C" int64_t Dot64(const int16_t (&arg_0)[64], const
int16_t (&arg_1)[64]) {

2 int64_t sum = 0;
3 for (int i = 0; i < 64; ++i) {
4 int32_t product = arg_0[i] * arg_1[i];
5 sum += product;
6 }
7 return sum;
8 }

Listing 24: Dot64.cpp

Dot64_truncation.cpp(Listing 25): Contains a bug: product trun-

cation to 16 bits.

1 int16_t product = arg_0[i] * arg_1[i];

Listing 25: Dot64_truncation.cpp

Verification Results:
• Dot64.scala vs Dot64.cpp

The solver returns UNSAT, proving functional equivalence.

• Dot64.scala vs Dot64_truncation.cpp
The solver returns SAT, indicating non-equivalence.

E Future Directions
E.1 Intelligent Solver Orchestration
Building on the foundational solver_runner module—which cur-

rently orchestrates Z3, Bitwuzla, and Kissat—future efforts will

focus on evolving the orchestration engine from a static dispatcher

into an adaptive, intelligent decision-making layer. We target three

key enhancements:

Expanded Verification Engine Integration: We aim to incorpo-

rate a broader spectrum of domain-specific engines to cover diverse

verification needs. This includes integrating ABC for optimized

combinational equivalence checking and CVC5 for handling more

complex theories.

Adaptive Solver Selection and Configuration: Different solvers
and configurations exhibit vastly different performance character-

istics depending on the circuit structure (e.g., arithmetic-heavy vs.

control-heavy). To optimize verification throughput, we plan to

implement automated selection mechanisms: Rule-Based Heuris-
tics: Leveraging static analysis of the IR to extract circuit features

(e.g., bit-width distribution, logic depth, operator types). Based on

these signatures, the systemwill apply expert rules to dispatch tasks

(e.g., routing purely boolean logic to AIGER-based SAT solvers like

Kissat, while directing complex word-level arithmetic to Bitwuzla).

AI-Driven Optimization: We explore employing Machine Learn-

ing (ML) models, such as Graph Neural Networks (GNNs), to embed

circuit netlists and predict the most efficient solver for a given in-

stance. Furthermore, we intend to utilize Bayesian Optimization

or Reinforcement Learning to automatically tune solver hyperpa-

rameters (e.g., restart strategies, decision heuristics) dynamically,

minimizing solving time without manual intervention.

Parallel Portfolio Execution: Beyond sequential invocation, we

will implement a parallel portfolio strategy. This involves launching

multiple solvers (or the same solver with distinct random seeds/con-

figurations) concurrently on multi-core systems. The orchestration

layer will terminate all processes as soon as the fastest solver re-

turns a result, thereby reducing the latency of the "straggler" effect

in hard verification instances.

E.2 Floating-Point Verification via Soft-Float
Emulation

While the current iteration of EqivFusion focuses on integer arith-

metic, extending verification capabilities to floating-point domains

is a key objective. We propose integrating a canonical floating-point

emulation library (e.g., SoftFloat) to bridge this gap. The envisaged

approach involves lowering high-level floating-point IR operations

(e.g., arith.addf, arith.mulf) into function calls that invoke veri-

fied software implementations of IEEE-754 compliant operators. By

replacing native floating-point instructions with bit-precise integer

logic from the emulation library, EqivFusion will enable rigorous

bit-level equivalence checking between algorithmic specifications

and hardware FPUs. This strategy effectively bypasses the complex-

ity of floating-point theories, allowing standard bit-vector solvers

to reason about floating-point semantics.

E.3 Supporting Hand-Written Assumes and
Lemmas

Although EqivFusion targets fully automated equivalence check-

ing, the semantic gap between high-level algorithms and low-level

RTL can sometimes exceed the capabilities of automatic infer-

ence—particularly when dealing with complex loop unrolling, re-

timing, or aggressive synthesis optimizations. To address these

challenges, a promising future direction is to support user-guided
verification through hand-written assumes and lemmas. Assumes
define critical environmental constraints or input invariants (e.g.,

valid control signal ranges or loop bounds) under which equiva-

lence is expected to hold, effectively pruning the solver’s search

space. Lemmas capture intermediate semantic properties, such as

algorithmic invariants or correspondence points between pipeline

stages. These can serve as "checkpoints" to guide the solver in state

alignment.

This proposed workflow draws inspiration from the methodology

employed in Synopsys Hector [29]. Similar to Hector’s approach of

leveraging user insights to decompose monolithic proofs, EqivFu-

sion aims to translate these user-provided annotations into solver

constraints and proof sub-goals. By incorporating verified lemmas

to guide equivalence partitioning and cross-level state alignment,

we seek to combine the scalability of automated solving with the

precision of manual guidance, without altering the core verification

pipeline.
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