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Back at the time, using 3DS Max for rendering broadcasting animations, | would run into the problem on a weekly basis. Animation rendering batches would fail at
a specific frame which would cause the Pentium to freeze. The frame could not be rendered at all, so | would instead render the particular frame on a 486 while the
Pentium skipped it and carried on with subsequent frames.
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Raytracing was particularly problematic. It wasn't a rare error at all iny experience.
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2 HiFloat8

‘This section first describes the definition of the novel format HiF8, ing 1pp peci Spec )

18-t point data f
values. Then, some consideration and design issues for HIF8 will be explained.

Natural Language Description - =21

oint encondi decoding method for data ex; n, for which the field

be o requi sper focuses on the 8-bit
nal dot field. Therefore,
tissa field.

ing and
led based on scenario re quirements. Tt
e On the basis of the IEEE 754 (1], HiF8 defines an

HiF§ elds le[T} a sign field, a dot field, an exponent field, and

RTL Coding

Specification 5

Synthesis

(Machine Learning Model)

. BRASRESH-RAPH

RERRE

(C Reference Model)
ESL

BRARRPLCR
i

C-RILEERS MR

L E2 78 03

import chisel:
Chisel
(Chisel) TAY.
., o) .
P ..-. ! .-. Fi
I8 -.’.' AATREMERT
L ] . " -

RTL Code

HRTRSOERE —
Netlist - = —— | src: 2021 CCF-HEFARS BR/F+Hr .
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ISuFEx,: Simulation or Formal?

o DUT =
multiplier Generate Check
sl Stimulus Result
(testbench) 2| Refernece |2
multiplicand Model

Simulation speed: 4.5 GHz Simulaiton/Emulation

* 16bit * 16bit: 232 patterns => 0.95 second

«  32bit * 32bit: 2°64 patterns =>129.98 years Verification
T Target o Modelling Solving
€S
i BEEETLE o Done
sva, golden spec
no
YFEZDatapathBBEE, EF55A9Simulation/emulation DUT CEX
EAMSCRY i DUTHILE
Intel 08 EEFFLERTICP U 1ZCH I Z(FE EF ormal RTL. netlistZ=
Formal
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Assertion-Based VIP

* Certification of
AMBA 3/4/5 checkers

= Popular standard
protocols

* Configurable,
illustrative, optimized
for formal

Common Database | Common Interface | Sim|

9D

Formal Property
Verification App
* Block-level or end-to-end
properties

* Interactive debug, what-if

and constraint setting
* High performance and
capacity

CSR

Control/Status Register
Verification App

= CSV or IP-XACT input

JasperGold® Apps

]

Sequential Equivalence
Checking App

* Sequential, temporal,
and functional
equivalence

* Reference versus
modified RTL

* Side-by-side debug

* Full chip capacity

G&)
Connectivity

Verification App
= CSV or IP-XACT input

*C ive access . and chip-level
policy checks connectivity
« Standard and proprietary =« Conditional,
protocols combinational, or
sequential connections
¥
DESIGN N

Design Coverage
Verification App
* Provides formal
coverage metrics
* Analyzes property set
completeness
* Shows verification from
bounded proofs

Higher Capacity

Verify complex 100M+
gate designs

Low-Power
Verification App

« Verifies power-aware
formal model

* RTL and power intent
file inputs

* Structural, functional,
and sequence checks

Visualize™
Interactive Debug

Modify/create properties
on the fly to explore
design behavior

d Interaction Between Apps | Fl

&

Superlint
App
« Comprehensive RTL lint
checks

Clock Domain
Crossing App

* Full structural and
functional checks

advanced formal checks

* Integrated violation
debug, reporting, and
waiver handling

UNR

Coverage
Unreachability App

* Proves reachability of
coverage holes

* Simulation coverage DB
and RTL inputs

* No formal expertise
required

Security Path
Verification App

« Identifies secure data
leakage paths

« Verifies data sanctity
and fault-tolerant
security

Increase Throughput

Utilize multiple proof
engines on parallel
compute resources

Model Checking

School of Integrated Circuits, SEU

. ility injection
flow with simulation

* State-of-the-art graphical
debug and waiver
handling

PROP
X-Propagation
Verification App
= Automatic property
generation
* Unexpected X
detection and debug

AN

o

Functional Safety
Verification App

 Analyzes fault list
for untestability

* Formally analyzes
fault propagation

* Integrated in Functional
Safety Solution

Wider Deployment

Proliferate across
engineering teams

K AERRON)

Impl. Model
CIC++RTL

VC Formal DPV

Transactional Equivalence Checking

Assume : \ >C

Equal

"

Compare
Outputs

Debug Datapath

Counter-Example Signoff

RTL

Design Compiler or
Fusion Compiler

o
o

Figure 1: Formality equivalence checking solution

SAT/SMT
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Assertion-Based VIP
« Certification of
AMBA 3145 checkers
« Popular standard
rotocols.
« Configurable,
illustrative, optimized
formal

9D

Formal Property
Verification App

« Block-level or end-to-end
properties

« Interactive debug, what-if
and constraint setting

« High performance and
capacity

CSR

ControllStatus Register
Verification A

JasperGold® Apps.
Common Database | Common Interface | Simplified Interaction Between Apps | Flexible Deployment

]

Sequential Equivalence
Checking App

« Sequentia, temporal,
and functional
equivalence

+ Reference versus
modified RTL

« Side-by.-side debug

« Full chip capacity

(u}

Connectivity
Verification A

@

Superlint
App
« Comprehensive RTL lint
checks
« Automatically generated
advanced formal checks
« Integrated violation
debug, reporting, and
waiver handling

UNR

Coverage

= CSV or IP-XACT input

« Comprehensive access
policy checks

« Standard and proprietary
protocols

DESIGN

Design Coverage
Verification A

* CSV or IP-XACT input

+ Subsystem and chip-level
‘connectivity

« Conditional,
‘combinational, or
sequential connections

¥

Low-Power
Verification A

« Proves reachability of
coverage holes

« Simulation coverage DB
and RTL inputs

« No formal expertise
required

Y,
of

Security Path
Verification A

(O]

Clock Domain

Crossing App
« Full structural and
functional checks
« Metastabilty injection
flow with simulation
« State-of-the-art graphical
debug and waiver
handiing

PROP
X-Propagation
Verification App

 Automatic property
generation

« Unexpected X
detection and debug

VAN

24
Functional Safety
Verification Ay

« Provides formal
coverage metrics

« Analyzes property set
completeness

« Shows verification from
bounded proofs

Higher Capacity

Verify complex 100M+-
gate designs

« Verif

. . list
formal model leakage paths for untestability

«RiLandpowerintent | «Verifies datasanctity | = Formally analyzes
file inputs and fault-tolerant fault propagation

« Structural, functional, secuity « Integrated in Functional
and sequence checks Safety Solution

Visualize™
Interactive Debug

Modifylcreate properties
on the iy o explore
design behavior

Increase Throughput

Utilize muitiple proof
engines on parallel
compute resources

Wider Deployment

Proliferate across
engineering teams

Impl. Model
C/C++/RTL

VC Formal DPV

Transactional Equivalence Checking

Assume :>(

Equal Compare

Outputs

"

Debug Datapath
Counter-Example Signoff

Model checking T B : Cadence JasperGold Datapath3&UE T B : Synopsys Hector
o INHEEEGalaxFV o TLEHEC
o HEXHNKFormalMC « HEXNKAveCEC

{MC EsseFPV . {*Cs EsseFECT

EIREDAT E{iAIRMAZ REAE
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What is Yosys

Yosys began as a BSc thesis project by Claire Wolf intended to support synthesis for a CGRA (coarse-
grained reconfigurable architecture). It then expanded into more general infrastructure for research on
synthesis.

Modern Yosys has full support for the synthesizable subset of Verilog-2005 and has been described as
“the GCC of hardware synthesis.” Freely available and open source, Yosys finds use across hobbyist
and commercial applications as well as academic.

7" Note

Yosys is released under the ISC License:

A permissive license lets people do anything with your code with proper attribution and without warranty. The ISC
license is functionally equivalent to the BSD 2-Clause and MIT licenses, removing some language that is no longer
necessary.

Together with the place and route tool nextpnr, Yosys can be used to program some FPGAs with a fully
end-to-end open source flow (Lattice iCE40 and ECP5). It also does the synthesis portion for the
OpenLane flow, targeting the SkyWater 130nm open source PDK for fully open source ASIC design.

Yosys can also do formal verification with backends for solver formats like SMT2. |

School of

Yosys, and the accompanying Open Source EDA ecosystem, is currently maintained by Yosys
Headquarters, with many of the core developers employed by YosysHQ GmbH. A commercial
extension, Tabby CAD Suite, includes the Verific frontend for industry-grade SystemVerilog and VHDL
support,lformal verification with SVA, and formal apps.

4 YosysHO

Integrated Circuits, SEU

A System for Sequential Synthesis and|Verification

ABC

Berkeley Logic Synthesis and Verification Group

/#*kCFil

FileName

SystemName

PackageName

Synopsis

Author

Affiliation

[pdrInv.c]

[ABC: Logic synthesis and verification system.]

[Property driven reachability.]

[Invariant computation, printing, verification.]

[Alan Mishchenko]

[UC Berkeley]

/*xCFil

FileName

SystemName

PackageName

Synopsis

Author

Affiliation

Date

[liveness.cl

[ABC: Logic synthesis and verification system.

[Liveness property checking.]

[Main implementation module.]

[Sayak Ray]

[UC Berkeley]

[Ver. 1.0. Started - January 1, 2009.]
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Check for
Updates

CHA: Supporting SVA-Like Assertions
in Formal Verification of Chisel Programs
(Tool Paper)

Shizhen Yul2®, Yifan Dong!2®, Jiuyang Liu®®, Yong Li!
Zhilin Wu2(®)®, David N. Jansen!®, and Lijun Zhang!2

! State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China
{yusz,liyong,wuzl,dnjansen,zhanglj}@ios.ac.cn, dong-yf18@tsinghua.org.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Huazhong University of Science and Technology, Wuhan, China
jiuyang@hust.edu.cn

®

Check for

Formal Verification of RISC-V Processor
Chisel Designs

Shidong Shen'2(®, Yicheng Liu'?®, Lijun Zhang"?®, Fu Song?®,
and Zhilin Wu'2®)

! Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China
{shensd, liuyc,zhanglj,songfu,wuzl}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Formal Verification of Chisel

School of Integrated Circuits, SEU

Integrating Exact Simulation into Sweeping for
Datapath Combinational Equivalence Checking

Zhihan Chen'?, Xindi Zhang"?, Yuhang Qian'?, Qiang Xu®, Shaowei Cail??*
1.School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
2. State Key Laboratory of Comp Science, Instii of Soft , Chinese Academy of Sciences, Beijing, China
3. Department of Computer Science & Engineering, The Chinese University of Hong Kong
{chenzh, zhangxd, gianyh} @ios.ac.cn; gxu@cse.cuhk.edu.hk; caisw@ios.ac.cn
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FSATIS A BRI ¥ (UNSAT Core) . {i#BSeedSAT, (EMlPTSEINAN
2 PRI 1% FRiH R

SAT in EDA

rIC3 Hardware Model Checker

HWMCC

rIC3 achieved first place in both the bit-level track and the word-level bit-vector track at the 2024 Hardware Model
Checking Competition (HWMCC'24).

T

To view the submission for HWMCC'24, please checkout the HWMCC24 branch or download the binary release at

https://github.com/gipsyh/riC3-HWMCC24.

' Publications

+ [CAV2025] The rlC3 Hardware Model Checker
» [CAV2025] Deeply Optimizing the SAT Solver for the IC3 Algorithm
+ [DAC2024] Predicting Lemmas in Generalization of IC3

o [arXiv] Extended CTG Generalization and Dynamic Adjustment of Generalization Strategies in IC3

riC3 Tool Flow

Frontends Preprocess Engines Backends

Ic3
-CTG and EXCTG
- Internal Signals

GipSAT

- SAT Sweeping
~Rewrite, Refactor

AIG Preprocess
-BCPinCOl

- Without Resstting

~DynAMic

BMC CabiCal ]

" TranSys 7 N
[ Certificate ] [ Ninteitiog K-Induction Kissat ]

MC in EDA
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property write_skip;

@(posedge clk) disable iff (rst)
'wen |=> $changed(waddr);
endproperty
w_underfill: cover property (write_skip);

{ RTL ] SVA@*E

Modeling 83 RiZSEAORTLHpropertyi@iZformaltif, FSLAIREREIT (AIGKF) iXEEModel Checking=kig.

o e
Formal
(nensr ) e e
4 ——— ——
Property
(assume + assert)

Table 1 Semantics of CTL*. Here, K is a Kripke structure, 7 is a path, s is a state, p is an atomic
proposition, f and g are state formulas, and ¢ and ¥ are CTL* formulas

Formali@RIEikst——!P & F ( Plassert property, FAHIRESHNRIT) Kskp i [pele)
K,sE-f iff K,sif
HFM(REERESZRARSREY, AtSONMES—LPERRSZRE, Wil FTEAZDMIRERT, I RR KsEfve | |KskforKskg
K,sE=EfAg iff K,sEfandK,sk=g
@J 'p ° K,s=Egp iff there is an infinite path 7 starting from s such that K, 7 |= ¢
K,sE=Agp iff for every infinite path 7 starting from s we have K, 7 = ¢
ra— K,nE=f iff K, s |= f for the first state s of
C [ \ F } - K,mE=—¢ iff K, e
B B ‘ K,nEeVvy iff K,n=gporK,n =y
R —J ‘ KanbEoAy iff K.m=pandK, 7=y
. K,7 =Xo iff K,n'=g
K,7m =F¢ iff there exists an i > 0 such that K,ni Ee
K, 7 =Gy iff forall j >0 we have K, 7/ =
. K, 7 =yUp iff there exists an i > 0 such that K, 7' = ¢ and for all
src. 2021 CCF-hEKEAS B8R 0<j<iwehave K, 7/ =y

School of Integrated Circuits, SEU

Clarke, Edmund M., et al., eds. Handbook of model
checking. Vol. 10. Cham: Springer, 2018.
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LEC/CEC,C2RTL, etc.

i A Design

(RTL/Netiist)

i2 A\ Design

(RTL/Netlist)

qaie‘w‘ i

src: 2021 CCF-shEEAS

Parser

Compare Points

’

1 )
| lekba :
| lmnn ;

LEC/CEC
st

School of Integrated Circuits, SEU

IMPLEMENTATION
(e.g.RTL2+ Power
Intent 2)

SPECIFICATION
(e.g. RTL1 + Power
Intent1)

Mapping
(optional)

Sequential Equivalence Checking (SEC) App

Equivalent?

Fix Setup Issue Design Bug
SPEC/Setup Debug Fix IMP
IMAP

SEC

src: Cadence JasperGold

Front-end Synthesis
[ I \

Bit-level Netlist
[ Verilog [ P (AIG) Unwind
arser Transition
HW) - System

‘Word-level Netlist
(Tool Specific)
C H > »| Unwind -
[(Software) Parser CFG loops SSA
[ I 1 |

Verification
Condition

Front-end Formula Generation

Figure 2: HW-CBMC Tool Flow

Mukherjee, Rajdeep, et al. "Formal techniques for
effective co-verification of hardware/software co-
designs." Proceedings of the 54th Annual Design
Automation Conference 2017. 2017.
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chformal - change formal constraints of the

async2sync - convert async FF inputs to sync clk2fflogic - convert clocked FFs to generic $ff design
cells

CirCUitS yosys> help chformal

yosys> help clk2fflogic chformal [types] [mode] [options] [selection]

yosys> help async2sync

async2sync [options] [selection]

This command replaces async FF inputs with sync circuits emulating the same
behavior for when the async signals are actually synchronized to the clock.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.

Do not automatically run 'chformal -lower' to lower $check cells.

/" Note

Help text automatically generated from passes/sat/async2sync.cc:30

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

School of Integrated Circuits, SEU

clk2fflogic [options] [selection]

This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.

—nolower

Do not automatically run 'chformal -lower' to lower $check cells.

Do not automatically run 'peepopt —formalclk' to rewrite clock patterns
to more formal friendly forms.

/" Note

Help text automatically generated from passes/sat/clk2fflogic.cc:36

Make changes to the formal constraints of the design. The [types] options the type of constraint to
operate on. If none of the following options are given, the command will operate on all constraint
types:

sassert cells, representing assert(...) constraints

sassume cells, representing assume(...) constraints

slive cells, representing assert(s_eventually ...)
sfair cells, representing assume(s_eventually ...)

scover cells, representing cover() statements

Additionally chformal will operate on scheck cells corresponding to the selected constraint types.
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The Verilog and AST frontends

=[H

i

o
=

This chapter provides an overview of the implementation of the Yosys Verilog and AST frontends. The
Verilog frontend reads Verilog-2005 code and creates an abstract syntax tree (AST) representation of
the input. This AST representation is then passed to the AST frontend that converts it to RTLIL data, as

illustrated in

Fig. 56.

S
/,’/ ‘ Preprocessor ‘
’ !
Verilog Frontend ‘ Lexer ‘
l . !
\\\ ‘ Parser ‘
L T
a ‘ Simplifier ‘
AST Frontend 1
l N ‘ RTLIL Generator ‘
-

Fig. 56 Simplified Verilog to RTLIL data flow ¢

o Optimization passes
= clean - remove unused cells and wires
muxpack - $mux/$pmux cascades to $pmux
onehot - optimize $eq cells for onehot signals
opt - perform simple optimizations
opt_clean - remove unused cells and wires
opt_demorgan - Optimize reductions with DeMorgan equivalents
opt_dff - perform DFF optimizations
opt_expr - perform const folding and simple expression rewriting
opt_ffinv - push inverters through FFs
opt_hier - perform cross-boundary optimization
opt_lut - optimize LUT cells
opt_lut_ins - discard unused LUT inputs
= opt_mem - optimize memories
opt_mem_feedback - convert memory read-to-write port feedback paths to write enables

opt_mem_priority - remove priority relations between write ports that can never collide
= opt_mem_widen - optimize memories where all ports are wide

opt_merge - consolidate identical cells

opt_muxtree - eliminate dead trees in multiplexer trees

opt_reduce - simplify large MUXes and AND/OR gates

opt_share - merge mutually exclusive cells of the same type that share an input signal
peepopt - collection of peephole optimizers

pmux2shiftx - transform $pmux cells to $shiftx cells

recover_names - Execute a lossy mapping command and recover original netnames
share - perform sat-based resource sharing

wreduce - reduce the word size of operations if possible

opt_expr - perform const folding and simple
expression rewriting

yosys> help opt_expr

opt_expr [options] [selection]
This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewriting.

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

School of Integrated Circuits, SEU
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Pattern Generation E
> CEXs

& Simulation-Guided
Verification

designl_vl.v designl_vl_opt.v EqUivalence
Checking
o h
Change

(ECO) designl_v2.v designl_v2_o

Lee, Siang-Yun, et al. "A simulation-guided paradigm for logic
synthesis and verification." IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41.8 (2021): 2573-2586.

School of Integrated Circuits, SEU

[Cz’rcuitl] [Circuitz]
[
‘Mlterlng
[ M, ] Sweeping
( * ) . .
Logic Synthesis [« —» Pair Selection <€—

i —~
= o _ SAT/BDD
g — Logic Simulation _|
S o 7 = i

2 o

> i Proven

S Sweeping =i Equivalent? NO

S 1

: I YESl
I8 1.
g 2 Final CEC Check [+ Merge Pair
J O J
«Q —

® 1 4‘

Fig. 2. Framework for a Typical Sweeping Based CEC Algorithm.

Chen, Zhihan, et al. "Integrating exact simulation into sweeping for
datapath combinational equivalence checking." 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023.
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e 68 outputs

e Different data path architectures

e Different multiplier implementations
e Different adder tree structure

e Word-level DFG nodes: 1400

O unsolved

e )
5 unsolved Rewriting

4 . N
18 unsolved / loglc, .
\_optimizations )

~
52 unsolved / Combat

/ ATPG
BDD

SAT
orchestration

J
 ATPG )
BDD
SAT
\orchestration )

- >
Combat
. J
 ATPG )
BDD
SAT
\orchestration )

N Wi
4 logic h
\_Optimizations
4 ™
Combat
\ J
" ATPG h
BDD
SAT
\orchestration )

Fig. 4. Effectiveness comes from many techniques

Koelbl, Alfred, et al. "Solver technology for system-level to RTL equivalence checking." 2009

Design, Automation & Test in Europe Conference & Exhibition. IEEE, 2009.

[ J 17 [ J




K

pfl ph

(p)
p=mi®my PM1T2)3 (PM1Ma)4 (PM1TM2)s5
z1)

mi=c?a: 2 6 (Micz1)7 (Micar)s (M 9

my = c?az: T2 MacT2)11 (M2Ca2)12 (m2CI )13
T =udv 14 (T1uv)1s (218 V)16 (T100)17
T2 =udv ToUT)18 (T2uv)19 (T2U V)20 (T2U V)21
a=rAs (@17)22 (@18)23 (@17 5)24
ay=r NS (azT)zs (azs)ze (azT )27

(a) gates G1,...,Gsg (b) miter circuit (c) CNF with clauses C1,...,Car
Figure 1 Example of an equivalence checking problem for two identical (isomorphic) circuits
consisting each of one AND, XOR, and ITE (multiplexer/if-then-else) gate. The miter circuit in the
middle (b) compares the output of the two circuits and assumes they are different by feeding them
into another XOR gate which in turn is assumed to produce the output value 1. The equational
semantics (a) is shown on the left which after Tseitin encoding [67] gives the CNF (c), e.g., the last

AND gate G in the second circuit is encoded by the last three clauses Cas, Cas and Caz.

1) [RIGHIRER

Version 4.0.0

« source code matches competition version 'sc2024"

« fast variable elimination during preprocessing (in fastel.c)

« lucky phases as in CaDiCaL but before and after preprocessing and with unit extraction and SLURM semantics
« reason jumping only for formulas with large binary clauses fraction

« U-shaped delta scaling of probing and elimination interval

« option -o <output> to write simplified formula to a file

« dynamically increased reduced-clauses fraction (60% - 90%)

« bounded variable addition (in factor.c)

A(N-bit) B(N-bit)

PP Generation

{

Compressor Tree

{

Full Adder

« clausal congruence closure algorithm (in congruence.c )

« generic preprocessing phase (using a subset-set of simplifiers)
« more vivification (tierO=irredundant,tier1,tier2,tier3)

o added --no-conflicts assynonymto --conflicts=0

« optimized and simplified vivification

Biere, Armin, et al. "Clausal congruence
closure." 27th International Conference
on Theory and Applications of

l

Result
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A(N-bit) B(N-bit)

D Compressor \{
1 010
DCompressor X0101
looo
S 1
aee 110110
01010
O[L]0J0O]JO 1T O
Stage2 01 8 0
0T 1 010
000 0

Full Adder

00110010

2) Datapath3&iE: Symbolic Computer
Algebra (RevSCA/AMulet); Theorem
Prover and Rewrite(Acl2 + Vescmul)

Satisfiability Testing (SAT 2024). Schloss

Dagstuhl-Leibniz-Zentrum fir Informatik,

https://github.com/arminbiere/kissat/blob/master/NEWS.md 2024

School of Integrated Circuits, SEU
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e Factl: many solvers, with many
parameters to set in each solver

e Fact2: many properties to prove

* Fact3: limited resources, cannot
run all tasks at the same time

* Fact4: properties with affinity

D_Pl
y Py

(a) Mix (b) Low (c) High
Fig. 1. Cone-of-influence of high- and low- affinity properties.

Dureja, Rohit, et al. "Boosting verification scalability via structural grouping and semantic partitioning of

properties." 2019 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2019.

School of Integrated Circuits, SEU

Hardware Design

\

PlaP27"'7P'n R

Property Extraction

Property Dispatcher

Thread 1 Thread 2 Thread n
- Property: P, - Property: P, - Property: P,
- Solver: Z3 - Solver: Boolector | | - Solver: Yices

RERIE) - -

Grouping/Ordering/Assume Guarantee

=>{HEIEE, HEEFIR, BUSEZHES



AR TEHRICTIRREE

,}, '\&53, SCHOOL OF INTEGRATED
SR & CIRCUITS, SEU

S AR IR F P

Natural Language Description

Specification

(Machine Learning Model)

(C Reference Model)

(Chisel)

RTL Code

Netlist

School of Integrated Circuits, SEU

2 HiFloat8

ovel 8-bit floating-point data format HiF8, including the support for special
s for HFS will be explained.

21 Novel Data Format

the basis of the IEEE s an
r fields as listed in Table T} a sign field, a dot field, an exponent field, and a mantissa field.

package hardfloat
import chisel3._

class DivsartRecF64 extends Module
{
val io = 10(new Bundle {
val inReady_div = Output(8ool())
val inReady_sart = Output(Bool())

HF/Eiln

BEFImAIEeEER:
MEE ST P ERTZT I Spec

‘An example of current NLAOpt dataset

("Modeling result |

Variables: s,

Constraints:
r<04(r+s)

A theme park transports its visitors around the park cither by scooter or rickshaw. A
scooter can carry 2 people while a rickshaw can carry 3 people. To avoid excessive
pollution, at most 40% of the vehicles used can be rickshaws. If the park needs to
transport at least 300 visitors, minimize the total number of scooters used.

3r+2s > 300
Objective: minimize s

HFlImagCoding Agent :
MBS L RIEGRRICI RS/ ChiselUi%/RTLI1#S

HFllm+graphfiAgent:

MAYERTTEFE LR IEFH I ZE

AR SRS IVIRITRIE
=>igit T

Impl. Model
CICHRTL

VC Formal DPV
Transactional Equivalence Checking

Design Compiler o
Fusion Compiler

IC Compiler Il

7
i
<I

Figure 1: Formality equivalence checking solution

LLMBETX THFENEITEREN T

TR 58 E [5] 7 !
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Time Cost for C2RTL verification (setup to fully proven)

» TCL refinement loop to run correctly
» fix constraints to run correctly
» fix C&RTL input/output mapping

» TCL refinement loop to converagence

» try case spliting, rerun, might still inconclusive. however we
find the bottleneck ...

» to prove the bottleneck, try A, inconclusive
» to prove the bottleneck, try B, inconclusive

* proved a tiny step

)

Show that for any integer n > 4, we have n? < nl.

theorem induction_ineq_nsglefactn (n: N) (ho:4<n):nA2<n!:=sorry

Understanding the Problem
We need to show that for any integer n > 4, the inequality n? < n! holds. Here,

n! denotes the factorial of n, which is the product of all positive integers up to n.

Proof Sketch

To prove this formally, we can use mathematical induction. Here's how the
induction would work:

1. Base Case: Verify the inequality forn = 4.

2. Inductive Step: Assume the inequality holds for some k = 4, i.e., k? < k!.
Then show that it holds for k + 1, i.e., (k + 1)* < (k + 1)

4°: chain-of-thought by DeepSeek-V3
Lean 4 Proof Structure

theorem induction_ineq_nsqlefactn (n : N) (ho:4<n):nA2<n!:=by

have base_case:422<4 ! :=by

sorry
B have inductive_step: V k24,kA2<k! > (k+1)A2<(k+1)!:=hy

sorry

have final_proof: V n24,nA2<n!:=by
sorry

sorry

Prover-V2-7B

=] ively Solve Subgoals by Deep!

lemma inductive_step (n: N) (ho : 4 < n) (base_case: 4A2<41)
:Vk24,kA2<k! > (k+1)A2<(k+1) !:=by
sorry

Synthesize into Complete Formal Proofs

theorem induction_ineq_nsqlefactn (n: N) (ho:4<n):nA2<n!:=bhy
have base_case:4A2<4 ! :=by
simp [Nat.factorial]
[ have inductive_step: V k24,kA2<sk!-> (k+1)7A2<s(k+1)!:=by
intro k hy h,
simp_all [Nat.factorial]
nlinarith

have final_proof : ¥ n24,nA2<n !:=by
intron hn
induction' hn with k hk
case refl => exact base_case
case step =>
apply inductive_step k hk
exact by assumption
apply final_proof
exact ho

,}, '\&53, SCHOOL OF INTEGRATED
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» proved all properties -~

1. Decompose a 2. Solving Sub-goals

* Rerun the final worked TCL theorem into sub-goals recursively with LLM
e xR BN IBF BYRAEE
MERmAFormal TERMEfFERScalabil |ty , RgeR0] Vi KAV FIE BABIERS - I FIMO 2RI wemn  LD€ED Seek-
BERHSROFER, HIGEA RTENMEIGIERR, 13 vis TR + RMOTS + RLPAF  RS418 - BERSHILAR waosn  LTOVEr
SiEStcliila v2 FEITHHE + BT FRAMAREA— BREIREE  FRHRE

Industrial Examples:
FERABR AR 2000+ tcligiF

LLM ProverSEIREZDatapathEd ZERR?
i, 7—ET R verSEIISZRDatapath BB IS B EIERR

SEHILLMIS ST RO EIRSAIIRAE, FEEFormal T
SR, R

src:
https://www.bilibili.com/video/BV1{fJ23YQE9Y/?spm_id from=333.1387.f

avlist.content.click&vd source=637e596cabatb504f6a386a9617ec263
School of Integrated Circuits, SEU e 2 e




BB T

- Ragi2021 CCF-EMAR /2B AN E I ZS N AW ERIGERIRH B
- BN ESREXIN B RRHEREER;
- RREREFEXI ISR

IR, SIFtRE!

BRRRZHETT : https://formind.netlify.app/
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